_{Diagonalization proof ... diagonalization, and Cantor's diagonalization proof, is a mathematical proof that an infinite set exists. It was published in 1891 by Georg Cantor. This ... }

_{Cantor's proof is often referred to as his "diagonalization argument". I know the concept, and how it makes for a game of "Dodgeball". 1) "Cantor wanted to prove that the real numbers are countable." No. Cantor wanted to prove that if we accept the existence of infinite sets, then the come in different sizes that …Sep 3, 2023 · We will prove the proposition for upper triangular matrices. The proof is by induction on the dimension of the matrix. A matrix is diagonal by definition and normal because the product of scalars is commutative. Now, suppose that upper triangular matrices are normal if and only if they are diagonal. We need to prove that the claim is true for …However, remember that each number ending in all zeroes is equivalent to a closely-related number ending in all 1's. To avoid complex discussion about whether this is or isn't a problem, let's do a second diagonalization proof, tweaking a few details. For this proof, we'll represent each number in base-10. So suppose that (0,1) is countable.This proof is known as Cantor's Diagonalization Process. Georg Cantor was a pioneer in the field of different sizes of infinite sets. Transfinite Numbers. As mentioned earlier, \(\aleph_0\) is used to denote the cardinality of a countable set. Transfinite numbers are used to describe the cardinalities of "higher & higher" infinities.Why is the language containing the Turing machines which only accept their own encoding not applicable to the diagonalization proof? 0. Turing recognizability and Reduction Mapping on pairs of related Turing machines. 1.Apr 17, 2017 · Math 217: The Proof of the spectral Theorem Professor Karen Smith (c)2015 UM Math Dept licensed under a Creative Commons By-NC-SA 4.0 International License. The Spectral Theorem: A square matrix is symmetric if and only if it has an orthonormal eigenbasis. Equivalently, a square matrix is symmetric if and only if there exists an …In set theory, Cantor's diagonal argument, also called the diagonalisation argument, the diagonal slash argument, the anti-diagonal argument, the diagonal method, and Cantor's diagonalization proof, was published in 1891 by Georg Cantor as a mathematical proof that there are infinite sets which cannot be … See more In set theory, Cantor's diagonal argument, also called the diagonalisation argument, the diagonal slash argument, the anti-diagonal argument, the diagonal method, and Cantor's diagonalization proof, was published in 1891 by Georg Cantor as a mathematical proof that there are infinite sets which cannot be put into one-to-one correspondence with the infinite set of natural numbers.Jan 19, 2020 · i.e. the columns of S S are the eigenvectors and D D is a diagonal matrix containing the eigenvalues on its diagonal. As the eigenvectors are linearly independent (verify this if you haven't already, it's a good exercise!) you can invert S S . Try to prove that. A = SDS−1. A = S D S − 1. Cantor's proof is often referred to as his "diagonalization argument". I know the concept, and how it makes for a game of "Dodgeball".if the first digit of the first number is 1, we assign the diagonal number the first digit 2. otherwise, we assign the first digit of the diagonal number to be 1. the next 8 digits of the diagonal number shall be 1, regardless. if the 10th digit of the second number is 1, we assign the diagonal number the 10th digit 2.People everywhere are preparing for the end of the world — just in case. Perhaps you’ve even thought about what you might do if an apocalypse were to come. Many people believe that the best way to survive is to get as far away from major ci...Since the diagonal language is not computable but the empty language is computable, that means that those languages are different. Others have already suggested the simplest and most elegant ways to prove that the diagonal language is not empty. Indeed, we can proceed by contradiction, and argue that if the diagonal language were …The second example we’ll show of a proof by diagonalization is the Halting Theorem, proved originally by Alan Turing, which says that there are some problems that computers can’t solve, even if given unbounded space and time to perform their computations.Note \(\PageIndex{2}\): Non-Uniqueness of Diagonalization. We saw in the above example that changing the order of the eigenvalues and eigenvectors produces a different diagonalization of the same matrix. There are generally many different ways to diagonalize a matrix, corresponding to different orderings of the eigenvalues of that matrix. I just noticed a small other thing: Now, if we have two commuting, diagonalizable matrices Then the proof follows. But I do not see anywhere where the diagonalizable part comes into play? The part To see this, let v be an eigenvector of B under eigenvalue λ. Then B(Av)=A(Bv)=λ Av. Extending to a general matrix A Now, consider if A is similar to a diagonal matrix. For example, let A = P D P − 1 for some invertible P and diagonal D. Then, A k is also easy to compute. Example. Let A = [ 7 2 − 4 1]. Find a formula for A k, given that A = P D P − 1, where P = [ 1 1 − 1 − 2] and D = [ 5 0 0 3]. Solution.diagonalization proof or smaller steps can be determined in the Dichotomy paradox, new pages can always appear in the book where they are unexpected. All of these contradictions muddy our ability ...Variations of the halting problem. Let M M be an arbitrary Turing machine and w ∈ {0, 1}∗ w ∈ { 0, 1 } ∗ be a binary string. The language HALT = { M, w : M halts on input w} HALT = { M, w : M halts on input w } is undecidable by the famous diagonalization proof. But what happens when we either fix the Turing machine M M or the input w w?29 thg 7, 2016 ... Keywords: Self-reference, Gِdel, the incompleteness theorem, fixed point theorem, Cantor's diagonal proof,. Richard's paradox, the liar paradox, ... Ultrasound tech programs in kansas city. 8 thg 4, 2007 ... Lawvere's theorem is a positive reformulation of the diagonalization trick that is at the heart of Cantor's theorem. It can be formulated in any ...Jan 30, 2003 · a conceptually crisp and simple proof of the existence of transcendental numbers, whereby inventing his famous diagonalization method. This proof is remarkable in many ways: Firstly, it is much simpler than the monumental achievement of Hermite and Lindemann on the transcendence of e and ˇ respectively. Perhaps one can still make the …Nov 5, 2020 · Here the diagonalization means that the Hamiltonian is unitarily equivalent to the second quantization of a one-particle Hamiltonian, up to a constant. In many studies of quadratic Hamiltonians, Bogoliubov transformations were con- ... Proof. It is suﬃcient to show that F is bijective. For each f ∈ H , we put G(f) :=24 thg 2, 2017 ... What Are We Trying to Prove? Diagonalization is a mathematical proof demonstrating that there are certain numbers that cannot be enumerated. The Arzelà–Ascoli theorem is a fundamental result of mathematical analysis giving necessary and sufficient conditions to decide whether every sequence of a given family of real -valued continuous functions defined on a closed and bounded interval has a uniformly convergent subsequence. The main condition is the equicontinuity of the family ...Proving a set is Uncountable or Countable Using Cantor's Diagonalization Proof Method. 2. Are all countable, infinite sets countably infinite? Hot Network Questions What would be the right way to split the profits of the sale of a co-owner property?Here’s Cantor’s proof. Suppose that f : N ! [0;1] is any function. Make a table of values of f, where the 1st row contains the decimal expansion of f(1), the 2nd row contains the …A diagonal matrix is a matrix that is both upper triangular and lower triangular. i.e., all the elements above and below the principal diagonal are zeros and hence the name "diagonal matrix". Its mathematical definition is, a matrix A = [a ij] is said to be diagonal if. A is a square matrix. aij = 0 when i ≠ j.Jul 3, 2015 · Diagonalization requires simula-tion and we don’t know how a fixed NP machine can simulate an arbitrary P machine. Also a diagonalization proof would likely relativize, that is, work even if all machines involved have access to the same additional information. Bak-er, Gill and Solovay6 showed no relativ-izable proof can settle the P …• Cantor inspired by the diagonalization proof • Idea: • columns = 0,1 ∗ = inputs • rows = 0,1 ∗ ⊇Turing machines • 𝑀𝑀th row, 𝑥𝑥th column = (𝑀𝑀,𝑥𝑥) • If row not TM – fill with 0s. • If 𝑀𝑀does not halt on 𝑥𝑥enter 0. • Consider function that computes diagonal entries and flips them.Georg Cantor, c. 1870 Cantor's first set theory article contains Georg Cantor's first theorems of transfinite set theory, which studies infinite sets and their properties. One of these theorems is his "revolutionary discovery" that the set of all real numbers is uncountably, rather than countably, infinite. This theorem is proved using Cantor's first …However, remember that each number ending in all zeroes is equivalent to a closely-related number ending in all 1's. To avoid complex discussion about whether this is or isn't a problem, let's do a second diagonalization proof, tweaking a few details. For this proof, we'll represent each number in base-10. So suppose that (0,1) is countable.Proof Since Z Z is countable, just take the list of all pairs from Z Z, and discard an entry if j = 0 and replace it with i/j if j 6= 0. This gives an enumeration of Q. The interesting thing is that some sets can be shown to be un-countable, using the technique of diagonalization. Fact 10. 2N is not countable.By Condition (11.4.2), this is also true for the rows of the matrix. The Spectral Theorem tells us that T ∈ L(V) is normal if and only if [T]e is diagonal with respect to an orthonormal basis e for V, i.e., if there exists a unitary matrix U such that. UTU ∗ = [λ1 0 ⋱ 0 λn]. Problem Five: Understanding Diagonalization. Proofs by diagonalization are tricky and rely on nuanced arguments. In this problem, we'll ask you to review the formal proof of Cantor’s theorem to help you better understand how it works. (Please read the Guide to Cantor's Theorem before attempting this problem.) Nov 28, 2019 · Diagonalization proof: A TM not decidable Sipser 4.11. Assume, towards a contradiction, that M ATM decides A. TM Define the TM D = "On input <M>: Run M. ATM. on <M, <M>>.If M. ATM accepts, reject; if M ATM. rejects, accept."Consider . running D on input <D>. Because D is a decider: either computation halts and accepts … or …Problem Five: Understanding Diagonalization. Proofs by diagonalization are tricky and rely on nuanced arguments. In this problem, we'll ask you to review the formal proof of Cantor’s theorem to help you better understand how it works. (Please read the Guide to Cantor's Theorem before attempting this problem.)1) ( n n − 1 …. 1) (This is basically the definition of a circulant matrix). This permutation matrix obviously has eigenvectors (ωk,ω2⋅k, …,ω(n−1)⋅k) ( ω k, ω 2 ⋅ k, …, ω ( n − 1) ⋅ k), so we can diagonalize the permutation matrix (and hence linear combinations of powers of this matrix) by conjugating by a matrix with ... Nov 21, 2016 · Question about Cantor's Diagonalization Proof. My discrete class acquainted me with me Cantor's proof that the real numbers between 0 and 1 are uncountable. I understand it in broad strokes - Cantor was able to show that in a list of all real numbers between 0 and 1, if you look at the list diagonally you find real numbers that are not …Throughout history, babies haven’t exactly been known for their intelligence, and they can’t really communicate what’s going on in their minds. However, recent studies are demonstrating that babies learn and process things much faster than ...diagonalization proof or smaller steps can be determined in the Dichotomy paradox, new pages can always appear in the book where they are unexpected. All of these contradictions muddy our ability ...This proof shows that there are infinite sets of many different “sizes” by considering the natural numbers and its successive power sets! The “size” of a set is called is cardinality. How to Cite this Page: Su, Francis E., et al. “Cantor Diagonalization.” Math Fun Facts. <https://www.math.hmc.edu/funfacts>. References: Cantor's Diagonal Argument: The maps are elements in N N = R. The diagonalization is done by changing an element in every diagonal entry. Halting Problem: The maps are partial recursive functions. The killer K program encodes the diagonalization. Diagonal Lemma / Fixed Point Lemma: The maps are formulas, with input being the codes of sentences. Amanda win. Mike lee swagger age. Problem Five: Understanding Diagonalization. Proofs by diagonalization are tricky and rely on nuanced arguments. In this problem, we'll ask you to review the formal proof of Cantor’s theorem to help you better understand how it works. (Please read the Guide to Cantor's Theorem before attempting this problem.)1) "Cantor wanted to prove that the real numbers are countable." No. Cantor wanted to prove that if we accept the existence of infinite sets, then the come in different sizes that …In mathematical logic, the diagonal lemma (also known as diagonalization lemma, self-reference lemma [1] or fixed point theorem) establishes the existence of self-referential sentences in certain formal theories of the natural numbers —specifically those theories that are strong enough to represent all computable functions.Proof by contradiction Suppose that H is a program that solves the halting problem. Then, we can write the program D as follows: H solves the halting problem means the following: If D(x) halts then H(code(D),x) is true otherwise H(code(D),x) is false. Suppose that D(code(D)) halts. Then, by definition of H, it must be that H(code(D),code(D)) is ...Jan 30, 2003 · a conceptually crisp and simple proof of the existence of transcendental numbers, whereby inventing his famous diagonalization method. This proof is remarkable in many ways: Firstly, it is much simpler than the monumental achievement of Hermite and Lindemann on the transcendence of e and ˇ respectively. Perhaps one can still make the …Jun 23, 2020 · 5.5 Similarity and Diagonalization In Section 3.3 we studied diagonalization of a square matrix A, and found important applications (for example to linear dynamicalsystems). We can nowutilize the concepts of subspace, basis, and dimension ... Proof. We use induction on k. If k =1, then {x1}is independent because x1 6=0. In …Diagonalization, and a Non-Trivial Theorem. We now turn to the last proof of this post, and our first non-trivial theorem: that there is no bijection between the set of real numbers and the set of natural numbers. ... called Cantor’s Diagonalization Proof. First, we recognize that every real number has a representation in base 2 as an ...The Arithmetic Hierarchy. Diagonalization proof relativizes. Arithmetic hierarchy is strict.: Meeting 12 : Mon, Aug 22, 08:00 am-08:50 am Quantified Predicate characterization of the Membership Problem. ... Structure and reductions. Reductions, Completeness. Cook-Levin Theorem and proof outline.: Meeting 33 : Mon, Oct 03, 08:00 …May 19, 2022 · Why is the language containing the Turing machines which only accept their own encoding not applicable to the diagonalization proof? 0. Turing recognizability and Reduction Mapping on pairs of related Turing machines. 1.Cantor’s ﬁrst proof of this theorem, or, indeed, even his second! More than a decade and a half before the diagonalization argument appeared Cantor published a different proof of the uncountability of R. The result was given, almost as an aside, in a pa-per [1] whose most prominent result was the countability of the algebraic numbers. …. Define diagonalization. diagonalization synonyms, diagonalization pronunciation, diagonalization translation, English dictionary definition of diagonalization. ... and inner …Proof Since Z Z is countable, just take the list of all pairs from Z Z, and discard an entry if j = 0 and replace it with i/j if j 6= 0. This gives an enumeration of Q. The interesting thing is that some sets can be shown to be un-countable, using the technique of diagonalization. Fact 10. 2N is not countable. Sep 22, 2023 · Turing’s proof didn’t involve any uncomputable problem that might arise in practice—instead, it concocted such a problem on the fly. Other diagonalization proofs are similarly aloof from the real world, so they can’t resolve questions where real-world details matter. “They handle computation at a distance,” Williams said. 8. The theorem states, correctly, that IF the matrix A A has n n linearly independent eigenvectors, then A A is diagonalizable. That does NOT mean that if A A has two dependent eigenvectors, that it is not diagonalizable. In fact, if A A has at least one eigenvector x x such that Ax = λx A x = λ x, then 2x 2 x is also an eigenvector of A A ...The proof of the Halting problem uses self-reference. That is, if a machine could solve the halting, then we can show that thee must be a machine that halts on its own input (i.e. when given its own program, or its own number in some enumeration, or..) if and only if it does not .. a contradiction.29 thg 3, 2020 ... Step 2: there are only a countably infinite number of algebraic numbers. (N.B. We use Cantor's Diagonalisation argument in Step 3). Countably ...In set theory, Cantor's diagonal argument, also called the diagonalisation argument, the diagonal slash argument, the anti-diagonal argument, the diagonal method, and Cantor's diagonalization proof, was published in 1891 by Georg Cantor as a mathematical proof that there are infinite sets which cannot be put into one-to-one correspondence with ... Sep 29, 2014 · 1. BTM is also undecidable, with a similar diagonalization proof. Suppose the Turing machine M M decided BTM. Define a Turing machine T T that, on input x x an encoding of a Turing machine, it computes the encoding yx y x of a Turing machine which runs the Turing machine encoded by x x on input x x; if M(yx) = 1 M ( y x) = 1 then T T … Diagonalization proof, …it seems to me that that 𝜑(n) ≥ Kn is the only estimate that can be derived from a generalization of the proof for the unsolvability of the Entscheidungsproblem. It appears that Gödel also recognized the simple extension of the halting theorem’s diagonalization proof to finite cases. Verification is the hardest problem in computer ..., A nonagon, or enneagon, is a polygon with nine sides and nine vertices, and it has 27 distinct diagonals. The formula for determining the number of diagonals of an n-sided polygon is n(n – 3)/2; thus, a nonagon has 9(9 – 3)/2 = 9(6)/2 = 54/..., (a)A proof that starts \Choose an arbitrary y 2N, and let x = y2" is likely to be a proof that 8y 2 N;8x 2N;:::. Solution False. This would only be a proof that 9x 2N with some property, not a proof that 8x 2N the property holds. (b)The set of real numbers (R) is countable. Solution False. We proved this in class using diagonalization. , Uncountable sets, diagonalization. There are some sets that simply cannot be counted. They just have too many elements! This was first understood by Cantor in the 19th century. I'll give an example of Cantor's famous diagonalization argument, which shows that certain sets are not countable., In the end, whether you accept diagonalization or not is up to you. The majority of theoreticians in the world seem to accept it; indeed, not accepting it can earn a bit of ridicule. But there’s no reason you need to bow to their logic… When all is said and done, a proof is just a social construct, a particular kind of persuasive argument., Uncountable sets, diagonalization. There are some sets that simply cannot be counted. They just have too many elements! This was first understood by Cantor in the 19th century. I'll give an example of Cantor's famous diagonalization argument, which shows that certain sets are not countable., Diagonalization, II We can also formulate diagonalization for matrices: If A is an n n matrix, then A is the associated matrix of T : Fn!Fn given by left-multiplication by A. Then we say A is diagonalizable when T is diagonalizable. By our results on change of basis, this is equivalent to saying that there exists an invertible matrix Q 2M n n(F ..., In this paper we prove the discrete convolution theorem by means of matrix theory. The proof makes use of the diagonalization of a circulant matrix to show that a circular convolution is diagonalized by the discrete Fourier transform. The diagonalization of the circular convolution shows that the eigenvalues of a circular convolution operator are …, I'll try to do the proof exactly: an infinite set S is countable if and only if there is a bijective function f: N -> S (this is the definition of countability). The set of all reals R is infinite because N is its subset. Let's assume that R is countable, so there is a bijection f: N -> R. Let's denote x the number given by Cantor's ... , The proof will be by diagonalization, like what is used to prove the undecidability of the Halting Problem. Speci cally, we want to nd TM D such that: 1. D runs in time O(g(n)) 2. L(D) 6= L(M) for every TM M that runs in time f(n). First recall how (in cs121) an undecidable problem is obtained via diagonalization. x 1 x 2 x 3::: M 1 0 M 2 1::: 0, Induction on n n the size of the matrix. See A A as a self-adjoint operator. Prove that every self-adjoint operator is diagonalizable in an orthonormal basis. Trivial for n = 1 n = 1. Assume true for n − 1 n − 1. Then take a n × n n × n hermitian matrix. Take an eigenvalue λ λ and a corresponding eignevector x x of norm 1 1., Oct 15, 2021 · Problem Six: Understanding Diagonalization. Proofs by diagonalization are tricky and rely on nuanced arguments. In this problem, we'll ask you to review the formal proof of Cantor’s theorem to help you better understand how it works. (Please read the Guide to Cantor's Theorem before attempting this problem.), Cantor’s ﬁrst proof of this theorem, or, indeed, even his second! More than a decade and a half before the diagonalization argument appeared Cantor published a different proof of the uncountability of R. The result was given, almost as an aside, in a pa-per [1] whose most prominent result was the countability of the algebraic numbers., Apr 16, 2013 · Induction on n n the size of the matrix. See A A as a self-adjoint operator. Prove that every self-adjoint operator is diagonalizable in an orthonormal basis. Trivial for n = 1 n = 1. Assume true for n − 1 n − 1. Then take a n × n n × n hermitian matrix. Take an eigenvalue λ λ and a corresponding eignevector x x of norm 1 1. , Uncountable sets, diagonalization. There are some sets that simply cannot be counted. They just have too many elements! This was first understood by Cantor in the 19th century. I'll give an example of Cantor's famous diagonalization argument, which shows that certain sets are not countable., When we feel love and kindness toward others it not only makes others feel loved and cared for, it helps us al When we feel love and kindness toward others it not only makes others feel loved and cared for, it helps us also to develop inner..., Proof. Homework Week 09. Lemma 3. Let A ∈ Rn×n with distinct eigenvalues. Let P = (v1 v2 ··· vn) be the matrix of eigenvectors and D = diag (λ1,λ2,...,λn) ..., A diagonalization proof is presented in section 4, and an explanation of the general usage of diagonalization follows. In section 5, universal languages are ..., The proof of Theorem 9.22 is often referred to as Cantor’s diagonal argument. It is named after the mathematician Georg Cantor, who first published the proof in 1874. Explain the connection between the winning strategy for Player Two in Dodge Ball (see Preview Activity 1) and the proof of Theorem 9.22 using Cantor’s diagonal argument. Answer, Circulant-Matrices September 7, 2017 In [1]:usingPyPlot, Interact 1 Circulant Matrices In this lecture, I want to introduce you to a new type of matrix: circulant matrices., Diagonalization is the process of finding the above and . Diagonalizing a matrix makes many subsequent computations easier. One can raise a diagonal matrix to a power by simply raising the diagonal entries to that power. The determinant of a diagonal matrix is simply the product of all diagonal entries. , Diagonalization as a Change of Basis¶. We can now turn to an understanding of how diagonalization informs us about the properties of \(A\).. Let's interpret the diagonalization \(A = PDP^{-1}\) in terms of how \(A\) acts as a linear operator.. When thinking of \(A\) as a linear operator, diagonalization has a specific interpretation:. Diagonalization separates the influence of each vector ..., In mathematical logic, the diagonal lemma (also known as diagonalization lemma, self-reference lemma [1] or fixed point theorem) establishes the existence of self-referential sentences in certain formal theories of the natural numbers —specifically those theories that are strong enough to represent all computable functions., Deer can be a beautiful addition to any garden, but they can also be a nuisance. If you’re looking to keep deer away from your garden, it’s important to choose the right plants. Here are some tips for creating a deer-proof garden., Mar 4, 2018 · Diagonalization proof: A TM not decidable Sipser 4.11 Assume, towards a contradiction, that M ATM decides A TM Define the TM D = "On input <M>: 1. Run M ATM on <M, <M>>. 2. If M ATM accepts, reject; if M ATM rejects, accept." Consider running D on input <D>. Because D is a decider: ! either computation halts and accepts …!, diagonalization. The standard trick can be described as follows: make a (usually infinite) list of requirements (in the usual diagonalization proof the requirements are "the function I want to define has to be different from f_i , the i-th function on the list") for each i, find an input w(i) ("the i-th witness") such that w(i) shows that, ℝ is Uncountable – Diagonalization Let ℝ= all real numbers (expressible by infinite decimal expansion) Theorem:ℝ is uncountable. Proof by contradiction via diagonalization: Assume ℝ is countable. So there is a 1-1 correspondence 𝑓:ℕ→ℝ Demonstrate a number 𝑥∈ℝ that is missing from the list. 𝑥=0.8516182… , The second example we’ll show of a proof by diagonalization is the Halting Theorem, proved originally by Alan Turing, which says that there are some problems that computers can’t solve, even if given unbounded space and time to perform their computations., Diagonalization is the process of finding the above and . Diagonalizing a matrix makes many subsequent computations easier. One can raise a diagonal matrix to a power by simply raising the diagonal entries to that power. The determinant of a diagonal matrix is simply the product of all diagonal entries. , The proof of this theorem will be presented explicitly for n = 2; the proof in the general case can be constructed based on the same method. Therefore, let A be 2 by 2, and denote its eigenvalues by λ 1 and λ 2 and the corresponding eigenvectors by v 1 and v 2 (so that A v 1 = λ 1 v 1 and A v 2 = λ 2 v 2 )., Jan 30, 2003 · a conceptually crisp and simple proof of the existence of transcendental numbers, whereby inventing his famous diagonalization method. This proof is remarkable in many ways: Firstly, it is much simpler than the monumental achievement of Hermite and Lindemann on the transcendence of e and ˇ respectively. Perhaps one can still make the …, More than a decade and a half before the diagonalization argument appeared Cantor published a different proof of the uncountability of R. The result was given, ..., Think of a new name for your set of numbers, and call yourself a constructivist, and most of your critics will leave you alone. Simplicio: Cantor's diagonal proof starts out with the assumption that there are actual infinities, and ends up with the conclusion that there are actual infinities. Salviati: Well, Simplicio, if this were what Cantor ... }